1. Application to approximation. Show that the function f defined by $f(x, y)=\exp (\sin (x) \cos (y))$ is differentiable in any point. Using this, give an approximate value of $\exp (\sin (3.16) \cos (0.02))$. Hint: Use $\pi \approx 3.14$ and $f(x+h, y+k) \approx f(x, y)+D f(x, y) .(h, k)$.
2. A differentiable function defined on a matrix space. We identify the space of (n, n) matrices with $\mathbb{R}^{n^{2}}$.
(a) Explain why the function $\operatorname{det} \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable.
(b) Compute the derivative of

$$
\text { det : } \begin{aligned}
\mathbb{R}^{4} & \rightarrow \mathbb{R} \\
& {\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right] }
\end{aligned}>x_{1} x_{4}-x_{2} x_{3} .
$$

3. Differentiability of norms.

(a) Prove that a norm on \mathbb{R}^{n} is never differentiable at 0 .
(b) Find a function defined on \mathbb{R}^{n} which is Lipschitz but not differentiable.
— Problems -
4. Study of a family of functions. Let $\alpha \in \mathbb{R}_{>0}$. We define f on \mathbb{R}^{2} by $f(0,0)=0$ and $f(x, y)=\frac{|x y|^{\alpha}}{\sqrt{x^{2}+y^{2}}}$. Study the continuity and the differentiability of f at $(0,0)$.
5. Differentiable and homogeneous of degree 1 implies linear. Let f be a differentiable function on \mathbb{R}^{n} such that for every $x \neq 0$ and $\lambda>0$, we have $f(\lambda x)=\lambda f(x)$. Show that f is linear.
6. Linear maps and Lipschitz functions. Show that any linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is Lipschitz.
7. Another expression of the tangent space of a graph. Let ϕ be the function defined on \mathbb{R}^{3} by $\phi(x, y, z)=x^{2}+y^{2}+z^{2}-1$. We note A the set $\phi^{-1}(\{0\}) \subset \mathbb{R}^{3}$.
(a) We put B for the set $B=\{(x, y, z) \in A \mid z>0\}$. Show that there exists a function f defined on some subset of \mathbb{R}^{2} such that $B=\{(x, y, z) \mid z=f(x, y)\}$. Verify that f and ϕ are differentiable in any point.
(b) Give an equation of the tangent space $T_{(a, b, c)} B$ of B at any point (a, b, c) in B.
(c) Check that $T_{(a, b, c)} B$ can also be expressed as $T_{(a, b, c)} B=(a, b, c)+\operatorname{ker} D \phi(a, b, c)$.
(d) If z is equal to 0 , is it possible to define the tangent space of $(x, y, z) \in B$?

Proofs or ideas of proof

1. A differentiable function defined on a matrix space. det is differentiable at any point since it is a polynomial function. Moreover, we have...
2. Study of a family of functions. In polar coordinates, we have $f(x, y)=r^{2 \alpha-1}|\cos (\theta) \sin (\theta)|^{\alpha}$. If $2 \alpha-1>0$ (i.e. $\alpha>\frac{1}{2}$), f is continuous at $(0,0)$. If $\alpha \leq \frac{1}{2}, f$ is not continuous at $(0,0)$ (consider sequences $\left(\frac{1}{n}, \frac{1}{n}\right)$ for example; case $\alpha=1 / 2$ may be special). Moreover, for every $\alpha>0, f$ has partial derivatives at $(0,0)$ and $\frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial y}(0,0)=0$. Then, f is differentiable at $(0,0)$ if and only if $\frac{f(x, y)}{\|(x, y)\|}$ tends to 0 when $\|(x, y)\|$ tends to 0 . Using polar coordinates, we can show that it is true if and only if $2 \alpha-2<0(\alpha<1)$.
3. Application to approximation. Compute partials and check f is C^{1}. We have $f(\pi+h, 0+$ $k) \approx f(\pi, 0)+h \frac{\partial f}{\partial x}(\pi, 0)+k \frac{\partial f}{\partial y}(\pi, 0)=1-h \approx 0.98$
4. A Lipschitz function which is not differentiable. Every norm on \mathbb{R}^{n} is a suitable example. For instance, let $f(x)$ be the euclidean norm of $x \in \mathbb{R}^{n}$. A direct computation shows that f has no partial derivative in any direction at $(0,0)\left(f\left(0+t e_{i}\right)=\left\|t e_{i}\right\|=|t|\left\|e_{i}\right\|\right)$. So f is not differentiable at $(0,0)$. However, f is clearly a Lipschitz function.

5. Differentiability of norms.

(a) Same proof as previous exercise applies.
(b) $\|\cdots\|_{2}$ is differentiable on $\mathbb{R}^{n} \backslash\{0\}$ and $\|\cdot\|_{\infty}$ is differentiable on $\mathbb{R}^{2} \backslash\{(x, y) /|x|=|y|\}$.
6. Linear maps and Lipschitz functions

7. Another expression of the tangent space of a graph.

(a) If (x, y, z) belongs to A, then we have $z^{2}=1-x^{2}-y^{2}$. Moreover, if $z>0$, we obtain that $z=\sqrt{1-x^{2}-y^{2}}$. Then $f(x, y)=\sqrt{1-x^{2}-y^{2}}$ is suitable.
(b) The tangent space of B at $\left(x_{0}, y_{0}, z_{0}\right)$ has equation $T_{\left(x_{0}, y_{0}, z_{0}\right)} B: \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+$ $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-z_{0}\right)=0$. A computation shows that $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=\frac{-x_{0}}{\sqrt{1-x_{0}^{2}-y_{0}^{2}}}=$ $\frac{-x_{0}}{z_{0}}$ and $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=\frac{-y_{0}}{z_{0}}$.
(c) We can put the equation of $T_{\left(x_{0}, y_{0}, z_{0}\right)} B$ under the form $x_{0} x+y_{0} y+z_{0} z=1$, i.e $D \varphi\left(x_{0}, y_{0}, z_{0}\right)(x, y, z)=2$. But $D \varphi\left(x_{0}, y_{0}, z_{0}\right)\left(x_{0}, y_{0}, z_{0}\right)=2$. So the equation of $T_{\left(x_{0}, y_{0}, z_{0}\right)} B$ is equivalent to $D \phi\left(x_{0}, y_{0}, z_{0}\right)\left((x, y, z)-\left(x_{0}, y_{0}, z_{0}\right)\right)=0$.
(d) If z is equal to 0 , we can do the same computation using x or x instead of z (one of these two numbers is nonzero).

