- Exercises -

- 1. **Application to approximation.** Show that the function f defined by f(x, y) = exp(sin(x)cos(y)) is differentiable in any point. Using this, give an approximate value of exp(sin(3.16)cos(0.02)). *Hint: Use* $\pi \approx 3.14$ *and* $f(x + h, y + k) \approx f(x, y) + Df(x, y).(h, k)$.
- 2. A differentiable function defined on a matrix space. We identify the space of (n, n)-matrices with \mathbb{R}^{n^2} .
 - (a) Explain why the function $\det \mathbb{R}^n \to \mathbb{R}$ is differentiable.
 - (b) Compute the derivative of

$$\det: \mathbb{R}^4 \to \mathbb{R}$$
$$\begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \mapsto x_1 x_4 - x_2 x_3.$$

3. Differentiability of norms.

- (a) Prove that a norm on \mathbb{R}^n is never differentiable at 0.
- (b) Find a function defined on \mathbb{R}^n which is Lipschitz but not differentiable.

— Problems —

- 4. Study of a family of functions. Let $\alpha \in \mathbb{R}_{>0}$. We define f on \mathbb{R}^2 by f(0,0) = 0 and $f(x,y) = \frac{|xy|^{\alpha}}{\sqrt{x^2+u^2}}$. Study the continuity and the differentiability of f at (0,0).
- 5. Differentiable and homogeneous of degree 1 implies linear. Let f be a differentiable function on \mathbb{R}^n such that for every $x \neq 0$ and $\lambda > 0$, we have $f(\lambda x) = \lambda f(x)$. Show that f is linear.
- 6. Linear maps and Lipschitz functions. Show that any linear map $\mathbb{R}^n \to \mathbb{R}^p$ is Lipschitz.
- 7. Another expression of the tangent space of a graph. Let ϕ be the function defined on \mathbb{R}^3 by $\phi(x, y, z) = x^2 + y^2 + z^2 1$. We note *A* the set $\phi^{-1}(\{0\}) \subset \mathbb{R}^3$.
 - (a) We put *B* for the set $B = \{(x, y, z) \in A \mid z > 0\}$. Show that there exists a function *f* defined on some subset of \mathbb{R}^2 such that $B = \{(x, y, z) \mid z = f(x, y)\}$. Verify that *f* and ϕ are differentiable in any point.
 - (b) Give an equation of the tangent space $T_{(a,b,c)}B$ of B at any point (a,b,c) in B.
 - (c) Check that $T_{(a,b,c)}B$ can also be expressed as $T_{(a,b,c)}B = (a,b,c) + \ker D\phi(a,b,c)$.
 - (d) If z is equal to 0, is it possible to define the tangent space of $(x, y, z) \in B$?

Proofs or ideas of proof

- 1. A differentiable function defined on a matrix space. *det* is differentiable at any point since it is a polynomial function. Moreover, we have...
- 2. Study of a family of functions. In polar coordinates, we have $f(x,y) = r^{2\alpha-1} |cos(\theta)sin(\theta)|^{\alpha}$. If $2\alpha - 1 > 0$ (i.e. $\alpha > \frac{1}{2}$), f is continuous at (0,0). If $\alpha \le \frac{1}{2}$, f is not continuous at (0,0) (consider sequences $(\frac{1}{n}, \frac{1}{n})$ for example; case $\alpha = 1/2$ may be special). Moreover, for every $\alpha > 0$, f has partial derivatives at (0,0) and $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Then, f is differentiable at (0,0) if and only if $\frac{f(x,y)}{||(x,y)||}$ tends to 0 when ||(x,y)|| tends to 0. Using polar coordinates, we can show that it is true if and only if $2\alpha - 2 < 0$ ($\alpha < 1$).
- 3. Application to approximation. Compute partials and check f is C^1 . We have $f(\pi + h, 0 + k) \approx f(\pi, 0) + h \frac{\partial f}{\partial x}(\pi, 0) + k \frac{\partial f}{\partial y}(\pi, 0) = 1 h \approx 0.98$
- 4. A Lipschitz function which is not differentiable. Every norm on \mathbb{R}^n is a suitable example. For instance, let f(x) be the euclidean norm of $x \in \mathbb{R}^n$. A direct computation shows that f has no partial derivative in any direction at (0,0) $(f(0 + te_i) = ||te_i|| = |t| ||e_i||$). So f is not differentiable at (0,0). However, f is clearly a Lipschitz function.

5. Differentiability of norms.

- (a) Same proof as previous exercise applies.
- (b) $||\cdots||_2$ is differentiable on $\mathbb{R}^n \setminus \{0\}$ and $||\cdot||_{\infty}$ is differentiable on $\mathbb{R}^2 \setminus \{(x, y)/|x| = |y|\}$.

— Problems —

6. Linear maps and Lipschitz functions

7. Another expression of the tangent space of a graph.

- (a) If (x, y, z) belongs to A, then we have $z^2 = 1 x^2 y^2$. Moreover, if z > 0, we obtain that $z = \sqrt{1 x^2 y^2}$. Then $f(x, y) = \sqrt{1 x^2 y^2}$ is suitable.
- (b) The tangent space of *B* at (x_0, y_0, z_0) has equation $T_{(x_0, y_0, z_0)}B : \frac{\partial f}{\partial x}(x_0, y_0)(x x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y y_0) (z z_0) = 0$. A computation shows that $\frac{\partial f}{\partial x}(x_0, y_0) = \frac{-x_0}{\sqrt{1 x_0^2 y_0^2}} = \frac{-x_0}{z_0}$ and $\frac{\partial f}{\partial y}(x_0, y_0) = \frac{-y_0}{z_0}$.
- (c) We can put the equation of $T_{(x_0,y_0,z_0)}B$ under the form $x_0x + y_0y + z_0z = 1$, i.e $D\varphi(x_0,y_0,z_0)(x,y,z) = 2$. But $D\varphi(x_0,y_0,z_0)(x_0,y_0,z_0) = 2$. So the equation of $T_{(x_0,y_0,z_0)}B$ is equivalent to $D\phi(x_0,y_0,z_0)((x,y,z) - (x_0,y_0,z_0)) = 0$.
- (d) If z is equal to 0, we can do the same computation using x or x instead of z (one of these two numbers is nonzero).